June 2006 6681 Mechanics M5 Mark Scheme

Question Number	Scheme	Marks
1. (a)	$\frac{\chi}{1} = \int_{2\pi}^{2\pi} \frac{m}{2\pi} \frac{\chi}{2\pi} dx$	71
	$= \frac{M}{2\alpha} \left[\frac{1}{3} \right]^{2\alpha}$	61
	$=\frac{43}{3}m^2$	A1 (3)
(b)	In Ix = Iy = ymail (shotchingrule)	ч,
	$I_{z} = I_{x} + I_{y} = \frac{g}{3}mc^{2} \left(\int_{-\infty}^{\infty} e^{x} e^{x} \right)$	MIAI (3)
2.	$d = \begin{pmatrix} 4 \\ -5 \end{pmatrix} - \begin{pmatrix} 2 \\ -4 \end{pmatrix} = 2i + 2j - K$	81
	$\underline{F}.(21+2j-k) = \frac{1}{2}x\frac{1}{2}k12^{L} = 36$	MI A2_
	but $E = \lambda (2i + 2j - k)$ (particle startistication)	m
	$\Rightarrow \lambda(2\underline{i}+2\underline{j}-\underline{k}) \cdot (2\underline{i}+2\underline{j}-\underline{k}) = \frac{36}{7\lambda} = 36$	'nι
	$=) \qquad \qquad$	AL
	$\underline{F}_{2} = 4 \begin{pmatrix} 2 \\ -1 \end{pmatrix} - \begin{pmatrix} 1 \\ -2 \end{pmatrix} = \frac{-7i + 6j - 3k}{-3k}$	۲۱ <i>4</i> ۱ ۲
3.(0)	$m^2 - 2m = m(m-2) = 0$	nı
	$=) m = 0 a m = 2$ $=) f = A + Be^{2t}$	A (
	$t=0, r=31 \Rightarrow A+B=31$	HLAI
	$\dot{r} = 2Be^{2t}$	n 1
	t=0, E=j 为 B= ij	A-I
	$\Rightarrow \underline{r} = (3\underline{i} - \underline{i}) + \underline{i} + \underline{e}^{2t} = 3\underline{i} + \underline{i} + \underline{i} + (\underline{e}^{2t} - 1)$	AI (8)
(6)	Patide moves in a straight hire	В
	Equation of Line is x=3	B1 (2) (0)

Question Number	Scheme	Marks
4.(0)	$\underline{R} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} + \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \\ 2 \end{pmatrix} = \underline{(41 + 2\underline{k})} \times \underline{k}$	MI AI (2)
(6)	$ \begin{pmatrix} -1 \\ + \\ + \\ \end{pmatrix} \times \begin{pmatrix} 1 \\ -2 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	μΙ
	$= \begin{pmatrix} 0 \\ 0 \\ -6 \end{pmatrix} + \begin{pmatrix} 2 \\ -2 \\ -2 \end{pmatrix} + \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix}$	A) A) A]
	$= \begin{pmatrix} 3\\ 3\\ -6 \end{pmatrix}$	A
	$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \times \begin{pmatrix} 4 \\ 0 \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ -6 \\ -6 \end{pmatrix}$	М
	$\begin{pmatrix} 2y \\ 42-2x \\ -4y \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \\ -6 \end{pmatrix}$	Alfe.
	e.g. $\chi = -3l_2$, $y = sl_2$, $z = 0$	BI
	$\underline{r} = \begin{pmatrix} -\Im_{L} \\ \Im_{L} \\ \circ \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ \circ \\ i \end{pmatrix}$	H A (10)
E C		(2)
5.(0)	$mv = (m+\delta m)(v+\delta v) + (-\delta m)(k+v+\delta v)$ $mv = mv + m\delta v + v\delta m - k\delta m - v\delta m$	HI AS
	kom = mout In the boat, as St-10,	
	$\frac{dm}{dv} = \frac{m}{k} + \frac{k}{k}$	AI (6)
(6)	$M = \int_{K} \frac{dv}{K}$ $M = u + (V - u)$	н
	$h_{M} - h_{M} = E^{-1}$	AI
	$l_{M} = \frac{1}{\mu} (V - \mu)$ $m_{\mu} = Me^{(V - \mu)}$ $Y - \mu$	n I
	m= Metrice K)	A+)
	Amount of fuel = M-m = M(I-e K)	MIA((6)

PMT

auestin Nuntar	Schene	Mades
6(1)	$ = \frac{1}{2}mc^{2} + m(\frac{1}{2}a)^{2} = \frac{3}{4}mc^{2}$	MIAI
	$\begin{array}{c} (0) & H(H) & -mga sid = \frac{3}{4}ma^{2}O \\ -\frac{29}{3a}sii0 = 0 \end{array}$	M A2 (5)
(4)	Fit shell $0, -\frac{2}{3} 0 = 0$ $T = 2T \sqrt{\frac{3}{3}}$	M1 +1 (2)
(c)	$P(R), Y - mg \sin 0 = m_2 \vec{0}$ =) $Y = mg \sin 0 + ma \left(-\frac{2g}{3g} \sin 0 \right)$	MIA2 MI
	= 2ngsind 3	AI (S)
7.(~)	$u = \sqrt{2ag}$	B1
	$P \bigoplus_{i=1}^{n} \sqrt{2ag} = 2ma^{2}\omega + 3ma^{2}\omega + \frac{1}{2}ma^{2}\omega$ $P \bigoplus_{i=1}^{n} \sqrt{2ag} = \omega$	M(+2
	$\frac{1}{3}\sqrt{\frac{3}{2a}} = \omega $	A1 (5)
(৮১	$\overline{\text{far}} Q$: $-I = 2maw - mu$ $\Rightarrow I = 6maw - 2maw = 4maw$	H(4)
	$= 4 \frac{3}{3} \sqrt{\frac{3}{2a}} = \frac{3}{3} \sqrt{\frac{8a_5}{2a_5}}$	A1 (G)
(0	PEGanief = KEloscof + KEloscof + KEloscof + PEloscof P P Q pulley Q	
	$3 \text{ mgd} = \frac{1}{2} 3 \text{ ma}^2 \omega^2 + \frac{1}{2} 2 \text{ ma}^2 \omega^2 + \frac{1}{2} \text{ ma}^2 \omega^2 + 2 \text{ mgd}$ $\text{ gd} = 3 \text{ ma}^2 \omega^2$	m1 43
	$gd = 3a^2 \cdot \frac{1}{9} \cdot \frac{5}{2a} = \frac{3}{6}$	MI AI
	720 6	(6)
		4

PMT